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Abstract
Human-like behavior is crucial for intelligent service robots that are to perform versatile tasks in day to day
life. In this paper, an integrated approach to human-like manipulation is presented, which addresses real-
time three-dimensional (3-D) workspace modeling and accessibility analysis for motion planning. The 3-D
workspace modeling uses three main principles: identification of global geometric features, substitution of
recognized known objects by corresponding solid models in the database and multi-resolution representation
of unknown obstacles as required by the task at hand. Accessibility analysis is done through visibility tests.
It complements and accelerates general motion planning. The experimental results demonstrate that the
human-like behavior-oriented methods are sufficiently fast and robust to model 3-D workspace, and to plan
and execute tasks for robotic manipulative applications.
© Koninklijke Brill NV, Leiden and The Robotics Society of Japan, 2008
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1. Introduction

Human-like real-time, as well as dependable manipulation is crucial for the next
generation of service robots that are to perform versatile tasks for assisting humans
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in day-to-day life. Such service robots need to perform environment modeling, ob-
ject recognition, motion planning and task execution in an integrated system in
terms of the overall performance of a given manipulation task. Therefore, more
serious efforts should be expended for the in-depth study of an integrated and task-
oriented paradigm of modeling–recognition–planning for manipulation. To date,
modeling, recognition and planning have been developed more or less indepen-
dently of each other without accounting for the effect of their interaction on the
overall performance as an integrated system, which often fares poorly when it
comes to integration.

Prior research that is related to our approach includes grasp planning of relatively
flat objects that can be treated as an extrusion of their projected silhouettes based
on vision-based two-dimensional (2-D) object modeling [1], and the planning of
grasp pose and stable grasp for unknown objects under the constraint of manipula-
tor workspace based on vision-based three-dimensional (3-D) object modeling via
structure from motion [2]. The latter combines grasp planning with object modeling
as an integrated system. For human-like manipulation in a natural setting, however,
further generalization is required since the work focuses the modeling only on a
single object to grasp without consideration of the surroundings for collision avoid-
ance or carry out the modeling without taking overall real-time performance into
consideration.

Generally speaking, proper attention is yet to be paid either to the critical issues
of modeling associated with the execution of manipulation tasks or to the oppor-
tunity of exploring various robotic functions as additional inputs to modeling. For
instance, since supporting the real-time requirement of a task is more immediate
and crucial than promoting higher precision in modeling for robotic manipulative
tasks, the level of precision in modeling may be set relative to task accomplishment
in compromise with efficiency. Furthermore, if helpful, such robotic functions as
motion planning and object recognition can be integrated with 3-D modeling as a
means of furnishing additional inputs to modeling.

In this paper, we address the areas where we can improve the performance of
service robots by considering the robotic tasks, toward human-like behaviors, i.e.,
real-time 3-D environment modeling and motion planning accelerated by visibility
analysis.

2. Related Work

Most of 3-D modeling research to date has focused on either accurately representing
individual objects/artifacts for archiving/displays or representing an environment
as a map for navigation or walk-through [3, 4]. In contrast, although real-time
modeling of 3-D cluttered workspace has been of utmost interest to the robotics
community, due to its impact on automated manipulation based on a perception ref-
erenced action paradigm, few benchmarking research results have been produced
and are available today.
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One of the issues crucial for establishing an approach to 3-D modeling may be
the optimization of the trade-off between precision and efficiency. Several works
[5–7] addressed this trade-off of precision and efficiency mainly in the context of
navigation, which may differ from that in the context of manipulation. Section 3 is
the core of this paper, and presents an approach to 3-D modeling as part of an in-
tegrated system of modeling, recognition and manipulation. A preliminary version
of Section 3 has appeared in Ref. [8].

The construction of a 3-D model often requires the registration of multiple scans
or images. The most popular algorithm for registration is Iterative Closest Points
(ICP), originally proposed by Besl and McKay [9]. The major problem associated
with ICP may be the convergence to local minima in the case where the initial
relative pose is far apart or in the case where there are many outliers. Recently, spin-
images [9] and SIFT (scale-invariant feature transform) [5, 10] have been chosen as
features for use in multiple-scan registration.

In general, accessibility analysis performs spatial or geometric reasoning to de-
termine the directions along which a tool can access a target object. The majority
of the work in accessibility analysis has been conducted in the inspection field
[11, 12], in which it is assumed that the environment is open for a probe’s mo-
tion and only the work piece may collide with the probe. Moreover, all previous
works on determining accessibility propose algorithms that run mostly off-line.

For the purpose of real-time accessibility analysis, the authors proposed to uti-
lize the visibility query accelerated by commodity graphics hardware [13, 14]. As
discussed in Section 4, the proposed approach had both strength and weakness. Sec-
tion 4 of this paper aims at reporting the progress of the authors’ on-going research
to overcome the weakness of the visibility query-based accessibility analysis.

3. Workspace Modeling

This paper presents an approach to 3-D modeling as part of an integrated system for
perception-guided, human-like robotic manipulation, particularly for performing
services for humans. Therefore, unlike conventional approaches where no proper
attention has been given to the overall performance of an integrated system, this
study addresses the efficiency and performance trade-off by considering the inte-
gration of robotic capability of recognizing global geometric features and objects,
and motion planning.

The proposed integrated approach to 3-D modeling explores and mimics the
computational principles behind the way humans model surroundings for naviga-
tion or manipulation. In a fundamental sense, it is the perception–action paradigm
that human navigation or manipulation is based on. A closer examination of the
perception–action paradigm of humans reveals that humans achieve an optimal
trade-off between efficiency and performance, by exploiting multiple sources of
information available for efficiency in modeling and reducing uncertainties, and
by controlling the level of modeling precision as required by the task at hand.
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For instance, upon encountering a new environment, humans quickly approximate
the geometric configuration of the environment based on known global geomet-
ric features such as parallelepiped rooms, long corridors, floors, ceilings, walls, etc.
Humans quickly identify known objects in the environment and replace them by the
models in memory so they do not need to be concerned about the details. Humans
pay attention to modeling details only when it is necessary for accomplishing the
given task at hand or avoiding collision. The above observations on the perception–
action paradigm of humans coincide well with the fundamental nature of human
visual perception in connection to geons [15].

Based on the above observations, we have chosen the following three fundamen-
tal computational principles in 3-D modeling:

(i) The approximate yet rapid characterization of geometric configuration of the
workspace by recognizing global geometric features such as planes, walls and
floors, and their spatial relations.

(ii) The quick recognition of known objects in the workspace for the in situ sub-
stitution of the recognized objects by their corresponding models in the data-
base.

(iii) The task-oriented modeling of geometric details on the fly, where the res-
olution of geometric details is chosen adaptively due to the requirement of
accomplishing the task at hand.

3.1. Planar Feature Extraction

In our experiments, the service robot is equipped with a stereo camera, mounted
on the parallel jaw gripper with an eye-on-hand configuration, as shown in Fig. 1a.
Figure 1b shows the workspace and Fig. 1c shows the range data acquired from
the stereo camera on the fly. The range data are in the form of 3-D point
clouds.

For an approximate yet rapid characterization of geometric configuration of the
workspace, the global planar features of the workspace are extracted using an ex-
tended version of the RANSAC (Random Sampling Consensus) algorithm [16] —
a widely used technique for fitting a model to an experimental data set. To en-
sure fast and robust extraction of planar features, we resort to the combined use of
the 3-D point clouds from stereo-sis and the SIFT features, the 3-D information of
which is available from stereo-sis. The boundaries of a feature plane are determined
using a 2-D oriented bounding box from the covariance matrix computed with 3-D
points that belong to the corresponding feature plane.

Planes are extracted and replaced for the point clouds. The extracted planes, to-
gether with the remaining points that are not lying on the planes, are shown in
Fig. 1d. By replacing the 3-D points that belong to the identified planar features
simply by plane models, we can achieve a significant enhancement of computa-
tional efficiency through the reduction of the search space for subsequent processes
such as object recognition.
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Figure 1. Point clouds generation and plane extraction. (a) Gripper with a stereo camera.
(b) Workspace. (c) Point clouds for the range data. (d) Extracted planes.

3.2. Object Recognition and Registration

It is assumed that all objects to be manipulated (called target objects) have solid
model representations in the object database. The object recognition algorithm is
comprised of the following steps:

(i) Matching SIFT features between the measured and the modeled.

(ii) Verification of the matching result based on additional geometric constraints
among SIFT features.

(iii) Integration of the solid model of the recognized object into the workspace
model.

Unlike the traditional algorithms [17], we use SIFT features with their 3-D in-
formation available from stereo-sis (stereo-sis SIFT) for object recognition. The
SIFT-matching procedure will output a set of matched stereo-sis SIFT-point pairs.
The pairs are then verified using a simple 3-D geometric constraint, named 3-D tri-
angle constraint. When there are N pairs, N C3 triangles can be generated. The 3-D
triangle constraint requests that a pair of triangles based on three matched point
pairs should be congruent within an error bound. Only when the triangles satisfy
the constraint are their vertices (three pairs of the matched points) accepted. Each
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measured SIFT point listed in a set of matched stereo-sis SIFT-point pairs is subject
to a triangle constraint test and is removed out from the pool of SIFT points waiting
for a test, once found valid. This process continues till all the measured SIFT points
are exhausted.

Figure 2 compares the matching results with and without the constraint. In Fig. 2,
the solid model of a cereal box, drawn from the database, is virtually placed at
the right side. In Fig. 2a, a mis-matched SIFT-point pair is found. The complex-
ity of object recognition is O(MsNs), where Ms is the number of SIFT features
in an object model and Ns is the number of SIFT features in the search space of
a workspace.

If the total number of matched SIFT features after verification is greater than
or equal to 3, the object is substituted by the corresponding solid model from the
database using the quaternion-based method [18]. Figure 3 shows the result.

The search space for object recognition can be significantly reduced by using
the planar features extracted at the previous stage. For example, consider the as-
sumption that all objects lie on the extracted planar surfaces, such as table/desk top

Figure 2. SIFT-based object recognition. (a) SIFT matching without the 3-D triangle constraint.
(b) SIFT matching with the 3-D triangle constraint.

Figure 3. Substitution of the target object’s point clouds by the corresponding solid model of the
database.
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Figure 4. Reduced search space of a target object. (a) Extracted planes. (b) Search space.

planes, i.e., no object is placed on top of other objects. In order to utilize the as-
sumption, the distance between a SIFT feature and an extracted plane is calculated.
If the distance is larger than the target object’s height for all extracted planes, the
SIFT feature is discarded. The remaining SIFT features constitute the search space
for object recognition. Figure 4 depicts the reduced search space of a target ob-
ject. The object recognition process immediately benefits from the reduced space.
In the current implementation, the recognition process in the reduced space takes
on average 117 ms, while working with the original space takes 234 ms.

Note that consideration of the planar surfaces simply reduces the search space.
The proposed stereo-sis SIFT-based object recognition is not limited to an object
lying on planar surfaces, but can be applicable to any object as long as a geometric
model of the object is available together with the SIFT features on it.

3.3. Task-Oriented Obstacle Modeling Using a Multi-Resolution Octree

The remaining point clouds that belong neither to the extracted global plane features
nor to the recognized objects are taken as obstacles. The number of obstacle points
is usually too large and therefore approximate representation is needed. A candidate
for such an approximate representation is a regular grid, where every grid cell is of
a uniform size. Figure 5a shows the regular grid cells, each of which contains at
least a 3-D point.

More preferred to the regular representation is a task-oriented representation,
where obstacles are modeled with different levels of precision, as required by the
task at hand. Note that the final task of the integrated system is to make a collision-
free path for grasping the target object. In this case, a task-oriented representation
implies that the resolution of individual cells be determined as required by generat-
ing a collision-free path. That is, those obstacles required to take into consideration
for generating a collision-free path should be represented in a higher resolution of
cells sufficient enough for an optimal collision-free path. On the other hand, those



990 S. Lee et al. / Advanced Robotics 22 (2008) 983–1005

Figure 5. Obstacle representations. (a) Regular grid. (b) Octree.

obstacles having nothing to do with generating a collision-free path may be repre-
sented in a coarse resolution of cells.

To implement the above task-oriented representation, we adopt a multi-resolution
octree. It is formed by dividing a parent cell recursively into eight equal-sized child
cells, starting from the entire workspace as the initial cell, where the number of
recursion in cell division determines the resolution of the corresponding cell. We
propose the recursive division to be carried out based on the fill factor of an octree
cell. The fill factor of a cell is defined as the following indices representing how
well the captured 3-D point clouds cover the corresponding cell: (i) the weighted
density of 3-D points of a cell and (ii) the uniformity of 3-D point distribution in
the cell.

The density of 3-D points is determined simply by dividing the number of 3-D
points in the cell by the cell size defined here as the area of the cell face. However, in
order to obtain a more accurate description of density, we need to take the distance
of a 3-D point from the camera into consideration. This is because, due to the nature
of stereo-sis, the further a cell is located from the camera, the less the number of
3-D points generated for the cell, as shown in Fig. 6. That is, the density of 3-D
points becomes lower as they are located further from the camera. To take this into
consideration, we assign a weight to a 3-D point and define the weighted density as
the sum of the weights of the 3-D points in a cell, where the weight of a 3-D point
is determined to be proportional to the multiplication of the depth of the 3-D point
(i.e., the distance along the optical axis from the camera) and the pixel size divided
by the focal length of the camera. The advantage of using the weighted density is
that the octree representation is less sensitive to the distance of the scene from the
camera.

The uniformity of 3-D point distribution in a cell is to see if the cell has an empty
or free space despite the weighted density of the cell exceeding the threshold. The
uniformity can be checked based on the biases of the mean and variance of the 3-D
points in the cell from the desired values.
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Figure 6. Distance-based fill factor computation.

When a cell has a weighted density greater than the predefined threshold and
satisfies the uniformity criterion, the cell is determined to be ‘occupied’ and the
recursion stops. Otherwise, recursive subdivision continues. Note that the use of
the weighted density allows a cell far from the camera to be classified as ‘occupied’
if the 3-D points are uniformly distributed, even though the number of 3-D points
in the cell is smaller, as shown in Fig. 6. The multi-resolution octree is generated
by assigning the thresholds of the weighted density and the uniformity differently
to individual cells, depending on their levels of precision as required by such task
as the generation of a collision-free path.

In the case where a cell contains no 3-D point, it is declared as ‘empty’. In addi-
tion to ‘occupied’ and ‘empty’, the leaf nodes of the octree can be ‘don’t know’ if
the corresponding cell is out of the camera’s field of view. As will be discussed in
Section 3.4, the workspace may not be captured fully by one shot and then multiple
scenes have to be combined. In such a case, we may designate ‘don’t know’ to those
cells out of the camera’s field of view.

3.4. SIFT and Planar Feature-Based Registration of Multiple Scenes

The proposed technique for 3-D workspace modeling makes use of a sequence
of images for fusion. Therefore, an efficient and real-time method for registering
multi-view 3-D data scanned by a stereo camera is of prime necessity. Having two
feature sets, St−1 and St , corresponding to timeframes t − 1 and t , respectively, the
following steps are taken to merge the two scenes:

(i) The SIFT feature set St−1 is reduced to S′
t−1, such that S′

t−1 contains only the
SIFT features lying on, within some error bound, any of the extracted feature
planes.

(ii) S′
t−1 is then matched with St , to obtain the matched point-pair set Mt−1,t .

(iii) The transformation matrix needed for registration is calculated using the
matched point-pair set Mt−1,t and the quaternion-based method of Horn [9].
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Figure 7. Matching multiple scenes. (a) Scene at a time frame. (b) Two consecutive scenes overlapped
before registration. (c) Registered scene with the matched points overlapped.

(iv) All 3-D points at timeframe t are transformed to the coordinate system of the
timeframe t − 1.

The complexity of scene registration is O(N ′
t−1Nt), where N ′

t−1 and Nt are the
numbers of SIFT features in S′

t−1 and St , respectively. Figure 7 shows the result of
scene registration based on stereo-sis SIFT and global plane features.

The cluttered neighborhood of a target object is delimited by a sphere, named
the locality sphere [13, 23], the center of which is located at the target object (see
Fig. 8). The radius of the locality sphere is automatically and heuristically com-
puted, considering the population of the obstacles surrounding the target object. In
the experimental workspace shown in Fig. 7, the radius is approximately 40 cm.

A simple camera motion is planned for taking a sequence of images that can
entirely cover the locality sphere. However, it would be more desirable if the camera
motion can be determined based on the sensor planning for capturing additional
images at the best camera poses. It is subject to further research.

3.5. Experimental Results and Discussion

We implemented the proposed algorithms on a mobile 7-d.o.f. manipulator, which
was equipped with a parallel jaw gripper. A stereo camera, Bumblebee [18] (Point
Grey Research), was installed in the eye-on-hand configuration on the gripper. The
manipulator is also equipped with a PC (Pentium4 2.8 GHz CPU).
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Figure 8. Delimited neighborhood about the target object.

Table 1.
Computation time for individual processes that constitute an entire cycle of modeling

Sub-modules Average time (ms)

SIFT feature calculation 188
Planar feature extraction 19
Object recognition 117
Multi-resolution octree construction 60
Scene registration 180
Total 564

The proposed algorithms for workspace modeling have been tested for 20
workspaces, each of which is similar in complexity to the workspace of Fig. 1b.
Table 1 shows the average time required for 3-D modeling in the experimental
workspaces. Figure 9 shows the comparative evaluation of performance, (a) com-
putation time and (b) depth error, among the proposed SIFT and plane-based scene
registration approach (marked by ‘SIFT+Plane’ in the graph) the SIFT-based ap-
proach without using the planar features (marked by ‘SIFT’ in the graph), and the
well-known ICP approach. As can be seen in the graphs, ‘SIFT+Plane’ and ‘SIFT’
show much better performance than ‘ICP’ in terms of the computation time (200
versus 800 ms) as well as of the depth error (1.5 versus 2.5 cm).

Although Fig. 9a does not show it clearly, ‘SIFT+Plane’ may have a potential to
further reduce the computation time of the plain ‘SIFT’, especially when a larger
portion of SIFT points can be pruned out by the over-the-plane constraint on SIFT
features.
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Figure 9. Comparative performance evaluation of the proposed approach against conventional ICP in
scene registration. (a) Registration time. (b) Depth error after registration.

According to our experiments, the lateral error is much less than the depth error,
often less than 30% of the depth error. In Fig. 9b, therefore, only the depth error
for the estimated pose of the target object is shown. The resulting depth and lateral
errors in the target pose estimate are regarded as sufficient for grasping under the
tolerance of the gripper in grasping in our experimentation. Should a higher preci-
sion be required by the gripper tolerance, we may resort to fusing the multiple SIFT
evidence in time from a sequence of images at different camera positions.

A stereo-sis matching often results in spurious data due to false matching or
large depth errors due to off-range imaging. For workspace modeling presented in
this section, we applied a procedure of pruning spurious or erroneous data based
on an epipolar geometric pruning [19] and a model constraint pruning for stereo-sis
SIFT as seen from the object recognition section.

4. Accessibility Analysis and Motion Planning

The complex nature of motion planning for high d.o.f. robots often makes it impos-
sible to reach interactive or real-time performance [20, 21]. However, the real-time
issue becomes critical for a service robot working in cluttered environments. This
section provides object access and removal algorithms that can accelerate general
motion planning.

As discussed earlier, the cluttered neighborhood of a target object is delimited by
a the locality sphere. The motion of the gripper is restricted to be linear within the
sphere, as shown in Fig. 10. More specifically, when the gripper accesses, grasps
and removes the target object, the access path is linear and the removal path is the
inverse of the access path. Therefore, both the access direction and the removal
direction are simultaneously determined. See Refs [22, 23] for another approach
where the removal path is not limited to be the inverse of the access path.

The key point in our approach is that by restricting the gripper’s motion to be
linear within the locality sphere, the accessibility analysis is reformulated into a vis-
ibility test. Suppose that a person sees an object and the object is fully visible along



S. Lee et al. / Advanced Robotics 22 (2008) 983–1005 995

Figure 10. Linear paths within the locality sphere.

Figure 11. Accessible directions.

the viewing direction. Then, the object can be removed along the opposite of the
viewing direction. Similarly, for the gripper to be able to move toward an object,
grasp it and move backward to remove the object, the gripper should be fully visible
at a grasp point.

4.1. Visibility Test

Each target object in the database contains graspability or accessibility information.
Figure 11 shows the graspability representation for the example cereal box. A robot
arm of a small gripper may access the box along four directions: ±x and ±y with
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respect to the local coordinates of the box. The proposed algorithm tests the object
visibility in each accessible direction.

The visibility test is done by rendering the input model and counting the number
of visible pixels. Let us consider the workspace given in Fig. 5b and discuss the
visibility test with the accessible direction x. Suppose that when only the target
object is rendered with the viewing direction x, as shown in Fig. 12a, the number
of pixels occupied by the object is m. At the next stage, the target object is rendered
into the environment which includes octree and planes, as shown in Fig. 12b. The
number of visible pixels n of the object should be less than m, because the cereal
box is just partially invisible due to the obstacles. When m > n, the target object
is partially (when n �= 0) or completely (when n = 0) invisible. Then, the object is
determined to be not accessible along the viewing direction.

Figure 12c and 12d shows the same visibility test process with the accessible
direction −x. As illustrated in the figures, m = n, and the box is determined to be
fully visible, i.e., accessible along −x.

When the object is determined to be fully visible, the gripper visibility is tested.
For this purpose, the object faces orthogonal to the accessible direction are sampled.
By placing the gripper at a sampled point, the number of visible pixels p is counted,
as shown in Fig. 12e. Then, the gripper is rendered into the workspace, as shown

Figure 12. Object and gripper visibility test. (a) Object seen along x. (b) Partially visible object.
(c) Object seen along −x. (d) Fully visible object. (e) Gripper seen along −x. (f) Fully visible gripper.
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in Fig. 12f, and the number of visible pixels q occupied by the gripper is counted.
Only when p = q is the gripper fully visible. It is the case in Fig. 12e and 12f.
Therefore, the target object is determined to be accessible by the gripper along −x.

4.2. Rasterization for the Visibility Test

The visibility test is accelerated by a powerful rasterization capability of graphics
hardware. Rasterization of a primitive maps the primitive into the pixel grid, as
shown in Fig. 13a. The rasterization process samples the primitive at each pixel’s
center to determine whether the pixel is included in the primitive or not.

The major strength of such an image-space algorithm is that it usually employs
a graphics processing unit (GPU) which has been evolving at a rate faster than
Moore’s law and therefore it can show excellent performance. However, it also
has a shortcoming: the accuracy is governed by the image-space resolution and
consequently some overlapping primitives may be missed, as shown in Fig. 13b,
where the two objects overlap, but do not share any pixel.

Figure 13. Handling of sampling error. (a) Rasterization. (b) Sampling error. (c) Rasterization with
line drawing.
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In order to overcome such a sampling error, the proposed algorithm adopts
boundary offset for each primitive. The boundary offset operation is easily imple-
mented using graphics hardware-supported line drawing. After rasterization, our
algorithm renders each primitive one more time in the wireframe rendering mode.
Figure 13c shows the primitives with lines drawn. The sum of normal rasterization
and line drawing can overcome the sampling error and eventually find the intersec-
tion. In Fig. 13c, the star-shaped pixels are shared by the primitives.

4.3. Grasp Quality

Note that, as shown in Fig. 14, a target object can be grasped even when the gripper
does not completely reach the sampled point. A simple and intuitive quality measure
is devised using the gripper–object overlap in conjunction with the reachability and
manipulability of the object:

aqi = kogoi + kdadi, (1)

in which aqi is the accessibility quality of a sample point i, goi is the gripper–object
overlap quality and adi is the accessible direction quality. The weights associated
to the qualities are denoted by ko and kd.

Obviously, the more the gripper and object overlap, the higher the friction and
the better the gripper–object overlap quality goi . On the other hand, the accessible
direction quality adi is a representation of the manipulability and the reachability of
the object. Given a robot position, the object’s front faces/sides are easily reached
and manipulated. In contrast, the back faces/sides of the object are more difficult to
reach and harder to manipulate. The accessibility quality aqi is estimated for each
grasp pose by the accessibility analysis algorithm.

There have been many works in the field of grasp analysis. For instance, Trinkle
[24] provided a quality measure of ‘how far a grasp is from losing form closure’.
Ferrari and Canni [25] proposed a measure that gauges the largest disturbance
wrench given a limited maximum contact force. In the framework proposed in this
paper, the grasp analysis was not addressed. Instead, a simple and intuitive quality
measure is used in order to combine the graspability and manipulability measures.

Figure 14. Gripper–object overlap depending on the obstacles.
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An existing system such as Ref. [26] can be incorporated into the proposed frame-
work.

4.4. Integration With Motion Planning

When a grasp pose for the gripper is computed, the corresponding access/removal
pose is also determined, as shown in Fig. 10. The gripper’s linear path between the
grasp pose and the access/removal pose is guaranteed to be collision-free. However,
motion planning is still required to produce the collision-free path for the rest of the
robot arm.

Among the parts of a robot, the gripper is closest to the cluttered environment
around the target object and, therefore, motion planning for the gripper is usually
the most time-consuming operation. The proposed approach increases the efficiency
of the overall system because motion planning for the gripper is greatly simpli-
fied.

Outside the locality sphere, i.e., ‘from the initial pose to the access pose’ and
‘from the removal pose to the goal pose’ in Fig. 10, motion planning is needed for
the entire arm. The proposed system can use any general motion planner, such as the
Elastic Strip framework [27] or the Probabilistic Roadmap method [28]. The current
implementation adopts the Elastic Strip framework. Note that the path generated by
the motion planner can be input to the 3-D workspace modeler in order to provide
adequate accuracy around the robot’s path. As a result, the environment along the
path can be gradually updated.

4.5. Experimental Results

The proposed algorithms are implemented on a PC with a Pentium4 2.8 GHz CPU
and NVIDIA GeForce 6600GT GPU. Figure 15 shows a series of snapshots for the
manipulation task in the workspace of Fig. 1b. Figure 16 is a new experimental
workspace and Fig. 17 is for the new workspace.

Table 2 shows the average time required for motion planning (Elastic Strip),
with and without accessibility analysis for 20 experimental workspaces. In mo-
tion planning, the time is measured for the entire path from the initial pose to
the goal pose. Note the performance gain between 4.769 (= 0.02 + 4.749) and
8.281 s.

5. Conclusion

An integrated approach to human-like manipulation is presented. The behavior-
oriented workspace modeling is not only novel but also significant, since it provides
a service robot with the capability of human-like and real-time operations. Also, the
proposed accessibility analysis approach follows a simplified behavior of humans,
i.e., fully visible objects are determined to be retrievable without collision. The
experimental results demonstrated that the proposed methods are sufficiently fast
and robust to model 3-D workspace, and plan and execute a task in real-time for
application to robotic manipulative tasks.
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Figure 15. Snapshots of experiment 1. (a) Initial pose. (b) Access pose. (c) Grasp pose. (d) Removal
pose. (e) Goal pose.

Figure 16. An experimental workspace. (a) Workspace. (b) Point clouds for the range data.

Note that the environment, as well as the objects used for the experimentation
are assumed to have textures sufficient for obtaining 3-D point clouds as well as
local features such as SIFT for recognition based on stereo cameras. However, the
proposed integrated approach to visual manipulation can be implemented with other
methods available for object recognition, as well as for collecting 3-D point clouds
based on active sensors that do not depend on textures. Also, the proposed approach
is not limited to the geometry of the objects and their layout on the table as used in
this experimentation, as long as a 3-D model of the object to be grasped is given,
and the access to and retrieval from the target object can be carried out by a straight
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Figure 17. Snapshots of experiment 2. (a) Initial pose. (b) Access pose. (c) Grasp pose. (d) Removal
pose. (e) Goal pose.

Table 2.
Computation time for accessibility analysis and motion planning

Sub-modules Average time (s)

Accessibility analysis 0.02
Motion planning with accessibility analysis 4.749
Motion planning without accessibility analysis 8.281

line motion of the gripper. A general form of access and retrieval motions that
requires non-straight line paths may be synthesized by a combination of straight-
line motions by applying the proposed method to a series of intermediate target
poses identified. However, how to determine intermediate target poses is a subject
of further investigation.
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